p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C42.56C22, C23.26C23, C22.57C24, C2.242+ 1+4, C2.162- 1+4, C4⋊Q8⋊18C2, C22⋊Q8⋊20C2, C42⋊2C2⋊9C2, C4⋊C4.40C22, (C2×C4).39C23, C42.C2⋊12C2, C4.4D4.9C2, (C2×D4).40C22, C22⋊C4.9C22, (C2×Q8).36C22, (C22×C4).77C22, C22.D4.3C2, SmallGroup(64,244)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.57C24
 G = < a,b,c,d,e,f | a2=b2=f2=1, c2=d2=e2=a, ab=ba, dcd-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ece-1=bc=cb, bd=db, be=eb, bf=fb, fcf=abc, ede-1=abd, ef=fe >
Subgroups: 141 in 98 conjugacy classes, 71 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8, C22.57C24
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, 2- 1+4, C22.57C24
Character table of C22.57C24
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
| ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial | 
| ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 | 
| ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 | 
| ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 | 
| ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 | 
| ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 | 
| ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 | 
| ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 | 
| ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 | 
| ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 | 
| ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 | 
| ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 | 
| ρ13 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 | 
| ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 | 
| ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 | 
| ρ16 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 | 
| ρ17 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 | 
| ρ18 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 | 
| ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 | 
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 9 3 11)(2 12 4 10)(5 21 7 23)(6 24 8 22)(13 18 15 20)(14 17 16 19)(25 31 27 29)(26 30 28 32)
(1 21 3 23)(2 14 4 16)(5 31 7 29)(6 12 8 10)(9 20 11 18)(13 25 15 27)(17 32 19 30)(22 26 24 28)
(2 26)(4 28)(5 7)(6 17)(8 19)(9 11)(10 30)(12 32)(14 24)(16 22)(18 20)(29 31)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,3,11)(2,12,4,10)(5,21,7,23)(6,24,8,22)(13,18,15,20)(14,17,16,19)(25,31,27,29)(26,30,28,32), (1,21,3,23)(2,14,4,16)(5,31,7,29)(6,12,8,10)(9,20,11,18)(13,25,15,27)(17,32,19,30)(22,26,24,28), (2,26)(4,28)(5,7)(6,17)(8,19)(9,11)(10,30)(12,32)(14,24)(16,22)(18,20)(29,31)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,3,11)(2,12,4,10)(5,21,7,23)(6,24,8,22)(13,18,15,20)(14,17,16,19)(25,31,27,29)(26,30,28,32), (1,21,3,23)(2,14,4,16)(5,31,7,29)(6,12,8,10)(9,20,11,18)(13,25,15,27)(17,32,19,30)(22,26,24,28), (2,26)(4,28)(5,7)(6,17)(8,19)(9,11)(10,30)(12,32)(14,24)(16,22)(18,20)(29,31) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,9,3,11),(2,12,4,10),(5,21,7,23),(6,24,8,22),(13,18,15,20),(14,17,16,19),(25,31,27,29),(26,30,28,32)], [(1,21,3,23),(2,14,4,16),(5,31,7,29),(6,12,8,10),(9,20,11,18),(13,25,15,27),(17,32,19,30),(22,26,24,28)], [(2,26),(4,28),(5,7),(6,17),(8,19),(9,11),(10,30),(12,32),(14,24),(16,22),(18,20),(29,31)]])
C22.57C24 is a maximal subgroup of
 C42.3C23  C42.6C23  C42.10C23  C22.120C25  C22.122C25  C22.124C25  C22.133C25  C22.134C25  C22.142C25  C22.144C25  C22.146C25  C22.148C25  C22.149C25  C22.152C25  C22.153C25  C22.154C25  C22.155C25  C22.157C25
 C42.D2p: C42.14D4  C42.16D4  C42.140D6  C42.157D6  C42.165D6  C42.180D6  C42.140D10  C42.157D10 ...
 C2p.2+ 1+4: C22.118C25  C22.127C25  C22.130C25  C22.139C25  C22.140C25  C22.141C25  C22.150C25  C6.252- 1+4 ...
C22.57C24 is a maximal quotient of 
 C24.225C23  C24.227C23  C23.261C24  C23.263C24  C23.264C24  C24.230C23  C23.580C24  C23.583C24  C23.589C24  C23.595C24  C24.405C23  C23.602C24  C23.615C24  C23.617C24  C23.618C24  C23.622C24  C24.418C23  C23.624C24  C23.627C24  C24.420C23  C24.421C23  C23.631C24  C23.634C24  C24.426C23  C23.645C24  C23.658C24  C23.659C24  C23.662C24  C23.664C24  C24.443C23  C23.666C24  C23.669C24  C24.445C23  C23.671C24  C23.673C24  C23.674C24  C23.675C24  C23.676C24  C23.677C24  C23.687C24  C23.689C24  C23.691C24  C23.693C24  C23.694C24  C23.699C24  C23.705C24  C23.709C24  C23.714C24  C24.462C23  C42⋊35D4  C23.727C24  C23.730C24  C23.731C24  C23.732C24  C23.733C24  C23.734C24  C23.735C24  C23.736C24  C23.737C24  C23.738C24  C23.739C24  C23.741C24  C42⋊12Q8  C42⋊13Q8
 C42.D2p: C42.199D4  C42.200D4  C42.201D4  C42.140D6  C42.157D6  C42.165D6  C42.180D6  C42.140D10 ...
 C4⋊C4.D2p: C23.574C24  C24.385C23  C23.590C24  C23.607C24  C23.613C24  C23.616C24  C23.620C24  C23.621C24 ...
Matrix representation of C22.57C24 ►in GL8(𝔽5)
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0],[0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1] >;
C22.57C24 in GAP, Magma, Sage, TeX
C_2^2._{57}C_2^4 % in TeX
G:=Group("C2^2.57C2^4"); // GroupNames label
G:=SmallGroup(64,244);
// by ID
G=gap.SmallGroup(64,244);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,96,217,103,650,476,86,1347,297]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=f^2=1,c^2=d^2=e^2=a,a*b=b*a,d*c*d^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,f*c*f=a*b*c,e*d*e^-1=a*b*d,e*f=f*e>;
// generators/relations
Export